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An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy 
Differential Evolution and Its Applications

(Rangkaian  Neuron Kabur Berfungsi Interaktif Berulang dengan Evolusi Pengkamiran Kabur dan Penggunaannya)
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ABSTRACT

In this paper, an interactively recurrent functional neural fuzzy network (IRFNFN) with fuzzy differential evolution (FDE) 
learning method was proposed for solving the control and the prediction problems. The traditional differential evolution 
(DE) method easily gets trapped in a local optimum during the learning process, but the proposed fuzzy differential 
evolution algorithm can overcome this shortcoming. Through the information sharing of nodes in the interactive layer, 
the proposed IRFNFN can effectively reduce the number of required rule nodes and improve the overall performance of 
the network. Finally, the IRFNFN model and associated FDE learning algorithm were applied to the control system of the 
water bath temperature and the forecast of the sunspot number. The experimental results demonstrate the effectiveness 
of the proposed method.
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ABSTRAK

Dalam kajian ini, rangkaian neuron kabur berfungsi interaktif berulang (IRFNFN) dengan kaedah pembelajaran evolusi 
pengkamiran kabur (FDE) dicadangkan untuk menyelesaikan masalah kawalan dan ramalan. Kaedah tradisi evolusi 
pengkamiran (DE) akan terperangkap dengan mudah di dalam optimum tempatan semasa proses pembelajaran, 
tetapi evolusi pengkamiran kabur algoritma yang dicadangkan boleh mengatasi kelemahan ini. Melalui perkongsian 
maklumat nod dalam lapisan interaktif, IRFNFN yang dicadangkan boleh mengurangkan bilangan nod peraturan yang 
diperlukan dengan berkesan dan meningkatkan prestasi keseluruhan rangkaian. Akhir sekali, gabungan model IRFNFN 
dan pembelajaran algoritma FDE digunakan untuk sistem kawalan suhu rendaman air dan ramalan nombor tompok 
matahari. Keputusan eksperimen menunjukkan keberkesanan kaedah yang dicadangkan.

Kata kunci: Evolusi pengkamiran; kawalan; ramalan; rangkaian berulang; rangkaian neuron kabur 

INTRODUCTION

In recent years, the applications of control theory to 
engineering system have been widely proposed. The 
engineering system in which the output data is not 
proportional to the input data, is called a nonlinear system. 
Controlling a nonlinear system is more difficult than 
controlling a linear one. Many researchers (Chen 2010; 
Juang & Hsieh 2010; Lee & Teng 2000; Lin et al. 2010) 
have conducted experiments to prove that the recurrent 
neural fuzzy network can achieve good results of the 
tracking, control and the prediction problems in complex 
nonlinear systems. The neural fuzzy networks commonly 
employ traditional learning methods, back propagation 
(BP) algorithm for example, to train the network parameters 
(Chen & Teng 1995; Li et al. 2012; Wang et al. 2011). 
However, BP algorithm is easily trapped into a local 
optimum solution.
	 Many researchers (Chen et al. 2014; Juang 2002; 
Lin et al. 2009) introduced evolutionary optimization 
algorithms into the learning step of neural fuzzy network, 
and Genetic algorithm (GA) (Lin 2004) is one of the 
popular evolutionary algorithms. GA can explore the global 

searching space efficiently, but the problems of the local 
optima trap and the premature convergence still exist. In 
1995, the differential evolutionary (DE) algorithm was 
proposed by Storn and Price (1997). Due to its simple 
process, less parameters, high stability and powerful 
population-based stochastic search technique, the DE and 
modified DE algorithms get a good performance in some 
high-dimensional engineering problems (Neri & Tirronen 
2010).
	 The differential evolution algorithm is a kind of greedy 
method, which makes it converge quickly but gets trapped 
into the local optimum easily. Thus, Chen et al. (2009) 
combined the modified differential evolution algorithm 
in the parameter adjustment of the neural fuzzy network, 
Huang et al. (2006) provided some DE strategies to choose 
and self-adaptively control the parameters and Gong et al. 
(2011) presented a family of improved DEs that attempts 
to adaptively select a suitable strategy.
	 In this paper, an interactively recurrent functional 
neural fuzzy network (IRFNFN) with fuzzy differential 
evolution (FDE) learning method was proposed for solving 
the control and the prediction problems. The proposed 
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fuzzy differential evolution algorithm can improve the 
disadvantage of the local optimum trap in traditional DE. 
Moreover, the IRFNFN can effectively reduce the number 
of required rule nodes by sharing the information of the 
nodes in the interactive layer. 

FUZZY DIFFERENTIAL EVOLUTION ALGORITHM

In order to achieve the adaptive searching, we use the 
diversities among the individuals as the inputs to the fuzzy 
membership functions, which inspire the corresponding 
strategies to adjust the parameters of DE. 

FUZZY ADAPTIVE PARAMETER ADJUSTMENT

Improved differential evolution algorithm   Compared to 
only one scale factor F in traditional DE/rand/1 method:
 
	 	 (1)

and DE/current-to-best/1:

	 	 (2)
	
	 We add an additional scale factor for more precisely 
controlling the convergence speed and the direction of 
flight.

	 	 (3)
	
	 The  denotes the individual i in the population, 
where i=1, 2,…, NP, and NP is the total number of the 
population. G denotes the generation and r1, r2 and r3 ∈ 
(1, NP) are random integers but r1 ≠ r2 ≠ r3 ≠ i.
	 This new method improves the DE not easily to 
converge prematurely. Moreover, since there was no 
tractive phenomenon between these two scale factors, the 
new mutation method would not be trapped into a local 
optimum while this algorithm converging.

ASSESSMENT OF EVOLUTION STATUS   

Evolutionary status is a measurement of diversity among 
the individuals distributed in the searching space. In each 
generation, a status factor f is produced, and then this 
algorithm adjusts the parameters F and CR in DE algorithm 
based on the status factor f. 
	 In order to obtain the status factor f, the individual 
diversities were calculated first.

	 	 (4)

where N and D represent the number of individuals with 
the dimension D and di is the difference degree between 
current individual and others. 
	 Then, the state factor was calculated as: 

	 f = (dg – dmin)/(dmax – dmin),	 (5)

where dg represents the diversity of the current optimum 
solution and dmin and dmax represent the minimum and the 
maximum values among all diversities. In addition, to 
increase the effect of disturbance on DE, we added a random 
selection scheme, which provides an equal probability, 1/
NP, to randomly select an individual diversity as dg. Then, 
it makes the proposed method not to use the same strategy 
persistently.

FUZZY STRATEGY 

We took the status factor as the input of fuzzy membership 
function, and it inspires the strategies, S1, S2, S3 and S4, 
through the fuzzy inference. The followings are the fuzzy 
membership functions, as illustrated in Figure 1.

	 	 (6)

	

	 	 (7)

	 	 (8)

 	

	 	 (9)

PARAMETERS ADJUSTMENT

F and CR are important parameters in DE, where CR is the 
crossover rate and CR ∈ [0,1]. Most articles set CR=0.9 for 
better use (Saruhan 2014; Simon 2013; Yang et al. 2010) 
and on most real world problems, Cr = 0.9 has become 
the standard, which works well across a large range of 
problem domains (Montgomery et al. 2010). In this study, 
we adjusted F1, F2 and CR adaptively according to f. The 
CR is adjusted through the following simple equation:

	 CR = 0.1 * f + 0.9.	 (10)

	 Then, we use the adaptive strategy inspired by fuzzy 
reasoning to adjust F1 and F2. The activation of strategy 
1 is regarded as a regional search, thus we increase the 
value of F1 significantly to enlarge disturbances. When 
strategy 2 was used, we increase F2 significantly to make 
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the individual move in the direction toward the current 
global solution. All the strategies are tabulated in Table 1.

GAUSSIAN DISTURBANCE

The rapid convergence of hyper-heuristic algorithm usually 
makes the algorithm get trapped in a local optimum. 
Therefore, many researchers incorporated the Gaussian 
disturbance method in these algorithms (Natsuki & Hitoshi 
2003). The original Gaussian disturbance used a fixed 
constant σ. But in this study, we reform a linearly decreased 
σ to increase the adaptability

	 mut(x) = x * ( 1 + gaussian(σ))	 (11)

	 σ = 1.0 – (1.0 – 0.1) * (g/G),	 (12)

where g and G represent the numbers of the current 
generation and the total generation of evolution. When the 
current generation of the evolutionary process is getting 
closer to end, the occurrence probability is getting lower 
and near 0.1. 

EXPERIMENTAL DETAILS

The performance of FDE was compared with DE/rand/1(DE) 
and DE/current-to-best/1(DEbest) on five well-known 
benchmark functions (Ali et al. 2005; Shang & Qin 
2006), listed in Table 2. Among them, f1-f4 is single peak 
optimization problems, and f5 is multimodal problems.
	 In our experiment, the dimension was set to 30 and 
the number of individuals was set to 100. The simulation 
results are tabulated in Table 3 and the results showed that 
the performance of the proposed FDE algorithm can exceed 
the performances of other DE algorithms.

AN INTERACTIVELY RECURRENT FUNCTIONAL 
NEURAL FUZZY NETWORK

In this section, we describe the structure of interactively 
recurrent functional neural fuzzy network (IRFNFN). The 
IRFNFN model adopts the interactive layer between the 
fuzzy-rule layer and the consequent layer in the recurrent 
functional neural fuzzy network (RFNFN). Through the 

FIGURE 1. Fuzzy membership functions

TABLE 1. Strategies of fuzzy differential evolution

F1 F2

strategy 1
strategy 2
strategy 3
strategy 4

large increase
small increase
small decrease
large decrease

small increase
large increase
large decrease
small decrease

TABLE 2. Benchmark functions

Test functions S

 
[-100,100]D

 
[-10,10]D

 
[-100,100]D

[-100,100]D

[-10,10]D

TABLE 3. The function values of different DE 
algorithms on test functions

Max 
generation

DE DEbest FDE

f1 150,000 3.74E-13 2.06E-23 9.97E-90
f2 200,000 3.74E-09 1.43E-18 1.04E-64
f3 500,000 1.85E-10 5.25E-27 1.25E-97
f4 500,000 3.10E-02 2.72E-15 1.18E-24
f5 300,000 8.44E-02 5.93E-02 1.09E-14
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information sharing among the nodes in this layer, it can 
improve the overall performance of the network. Figure 2 
illustrates the structure of the IRFNFN.

Layer 1: No function is performed in this layer. The node 
only transmits input values to layer 2.

 	 ui
(1) = xi.	 (13)

Layer 2: Nodes in this layer correspond to a single 
linguistic label of the input variables in layer 1. 

	 ui
(2) = oi

(1), 	 (14)

 	 hij
(2) = exp 	 (15)

where mij and σij are the mean and variance of the Gaussian 
membership function, respectively. Additionally, this layer 
also has a recurrent relationship.

	 oij
(2)(t) = hij

(2)(t) + oij
(2)(t – 1) . θij,	 (16)

where θij is the feedback weight.

Layer 3: Nodes in this layer are called rule nodes and the 
product operator is adopted to perform the precondition 
part of the fuzzy rules.

	 oj
(3) = ∏iuij

(3).	 (17)

Layer 4: This layer is the interactive layer. Node can 
exchange information with other rule nodes,

	 	 (18)

	 	 (19)

where q and M represent for the number of output and the 
number of fuzzy rule;  is the interactive influence weight; 
and Ok

(4) (t – 1) - k-th is the node’s previous output result.

Layer 5: Node in this layer received the output from layer 
4 and the functional-link neural network (FLNN) output. 

	 oj
(5) = uj

(5) 	 (20)

where wkj is the corresponding link weight of the FLNN and 
k is the functional expansion of input variables.

Layer 6: The output node acts as a defuzzifier with

	 	 (21)

where R is the number of fuzzy rules; and y is the output 
of IRFNFN model.
	 The parameter optimization of IRFNFN is learned by 
the FDE learning algorithm, which has been mentioned 
previously.

FIGURE 2. Structure of IRFNFN model



	 	 1725

RESULTS

In order to determine the performance of the proposed 
approach, we compare the experimental results with other 
learning methods such as DE and DEbest. The scaling factor 
F and the population size play a pivotal role in guiding the 
convergence rate. There are two alternatives in choosing 
these two parameters: A population of large individuals 
with smaller F and a small population with F ≥ 0.8 
(Montgomery 2010; Montgomery et al. 2010). In order to 
compromise between convergence speed and convergence 
probability, F = 0.9 is a good choice (Ronkkonen et al. 
2005). In this study, we use a small population and set 
F=0.9. The default parameters are tabulated in Table 4. 

system borders and surroundings. Assuming that TR and 
C are essentially constant, we rewrite the system in (23) 
into discrete-time form.

	 y(k + 1) = e–∝Tsy(k) +  y(k) + [1 – e–αTs]y0,

	 (24)

where α and δ are constant values describing TR and C. The 
system parameters used in this example were α=1.0015e-4, 
δ=8.67973e-3, and Y0=25.0. The input u(k) was limited to 0 
and 5V representing voltage units and the sampling period 
TS was set to 30.
	 The 120 training patterns were chosen from the input-
output characteristics in order to cover the entire reference 
output. In this experiment, we only use three fuzzy rules 
to control the water bath temperature system. The result of 
learning process is tabulated in Table 5. After the parameter 
optimization of IRFNFN is completed by the FDE learning, 
we test the network performance by the testing data

	 	 (25)

where yref represents the targeted water temperature of the 
control system. 
	 Figure 3 shows the learning curves of the FDE, DE and 
DEbest. In the beginning, the RMS error of FDE method was 
not superior to other DE algorithms. But after thousands 
of generation, FDE performs better while DE and DEbest 
methods were trapped into a local optimum. In that, for a 
complex network optimization problem, FDE can perform 
well, but it takes more time to find a better solution.

TABLE 4. Default parameter setting

CR F F1 F2

0.9 0.9 0.8 0.6

	 The number of individuals was set to 30 and the 
learning was processed for 5000 generations. In addition, 
the root mean square error (RMSE) was used as evaluation 
criteria of the learning convergence. Finally, the testing 
results were verified by the sum of absolute error (SAE) 
and the formula is as follows

 	 SAE = Σk|yref(k) – y(k)|,	 (22)

where yref(k) represents the expected output of network and 
y(k) is the actual output in simulation.
	 In this section, the proposed model and associated 
learning algorithm were applied to control the water bath 
temperature system and forecast the sunspot number 
problems.

CONTROL OF WATER BATH TEMPERATURE SYSTEM

The goal of this example is to adjust the output of a water 
bath system to a stable target temperature using the IRFNFN. 
The water bath plan is governed by:

	 	 (23)

where y(t) is the output temperature in Celsius; u(t) is 
a heating flowing inward the system; Y0 is the room 
temperature; C is the equivalent system thermal capacity; 
and TR is the equivalent thermal resistance between the 

TABLE 5. Performance comparison of different learning methods

Mean RMSE Best RMSE Worst RMSE

DE-IRFNFN
DEbest-IRFNFN
FDE-IRFNFN

1.3561
0.8668
0.4297

1.224160
0.768013
0.261764

1.588412
0.855330
0.579981

FIGURE 3. The learning curves of the FDE, DE and DEbest
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	 The testing results of water bath temperature control 
system by using DE, DEbest and FDE learning methods 
are shown in Figure 4(a)-4(c). Figure 4(d) shows the 
temperature difference between the desired output and 
the model output. Table 6 shows the sum of absolute error 
(SAE) by using various learning methods. In this table, we 
can find that the SAE of FDE has the lowest value. 

FORECAST OF THE SUNSPOT NUMBER

The sunspot numbers exhibit a nonlinear pattern and those 
are difficult to predict. The inputs x1 is defined as x1(t) 
= (t – 1), x2(t) = (t – 2) and x3(t) = (t – 3), where t 
represents the year and (t – 1) is the sunspot number at 

the t year. In this experiment, 151 data (from 1703 to 1884) 
were selected as the training set and the whole 302 data 
(from 1703 to 2004) were used as testing data. Here we 
use only three fuzzy rules to perform prediction problem. 
The experimental results using various learning methods 
are shown in Table 7.
	 Figure 5 shows the learning curves of various learning 
methods. In this figure, we can see that DE and DEbest have 
fallen into the local optimum during the learning process. 
In contrast, the proposed FDE can escape from the local 
solution after 3000 iterations. Table 8 tabulates the sum 
of absolute error (SAE) by using various learning methods. 
The results showed that the proposed method has superior 
performances than the others. 

TABLE 6. The experimental result of water bath temperature control system

DE DEbest FDE

SAE 474.252 422.966 404.207

TABLE 7. Performance comparison of various learning methods

Mean RMSE Best RMSE Worst RMSE

DE-IRFNFN 13.8941 13.3845 14.7746
DEbest-IRFNFN 13.067 12.9121 13.4989
FDE-IRFNFN 11.9511 11.1615 12.0102

FIGURE 4. The testing results of water bath temperature control system, 
(a) DE, (b) DEbest, (c) FDE and (d) temperature error

	 (a) 	 (b)

	 (c) 	 (d)
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CONCLUSION

In this paper, we proposed an interactively recurrent 
functional neural fuzzy network with fuzzy differential 
evolution learning algorithm for solving control and 
prediction problems. The proposed fuzzy differential 
evolution algorithm can improve the drawback of local 
optimum trap in traditional DE, and the proposed IRFNFN 
can effectively reduce the number of required rule nodes 
by sharing node information in the interactive layer. The 
experimental results proved that the fuzzy differential 
evolution has effectively superior performance than the 
other DE methods.
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